Konvex regelbunden 4-polytop

Inom matematiken är en konvex regelbunden 4-polytop (eller polychoron) en 4-dimensionell (4D) polytop som är både regelbunden och konvex. Dessa är de fyrdimensionella motsvarigheterna till de platonska soliderna (i tre dimensioner) och de regelbundna polygonerna (i två dimensioner).

Dessa polytoper beskrevs först av den schweiziske matematikern Ludwig Schläfli i mitten av 1800-talet. Schläfli upptäckte att det finns exakt sex sådana figurer. Fem av dessa kan ses som högre dimensionella analoger till de platonska soliderna. Det finns ytterligare en figur (24-cellen) som inte har någon tredimensionell motsvarighet.

Varje konvex regelbunden 4-polytop avgränsas av en uppsättning tredimensionella celler som alla är platonska solider av samma typ och storlek. Dessa är sammanfogade längs sina respektive ytor på ett regelbundet sätt.

Egenskaper

I följande tabeller listas några egenskaper hos de sex konvexa regelbundna polykorerna. Dessa polykoras symmetrigrupper är alla Coxetergrupper och anges i den notation som beskrivs i den artikeln. Siffran efter gruppens namn är gruppens ordning.

Namn

Familj

Schläfli
symbol

Vertikaler

Kanter

Ansikten

Celler

Siffror för toppar

Dubbel polytop

Symmetrigrupp

Pentakoron5-cellpentatophyperpyramidhypertetraeder4-simplex

simplex
(n-simplex)

{3,3,3}

5

10

10
trianglar

5
tetraeder

tetraeder

(själv-dual)

A4

120

Tesseractoctachoron8-cellhyperkubus4-kubus

hyperkubus
(n-kubus)

{4,3,3}

16

32

24
rutor

8
kuber

tetraeder

16-cellig

B4

384

Hexadecachoron16-cellorthoplexhyperoctahedron4-orthoplex

kors-polytop
(n-orthoplex)

{3,3,4}

8

24

32
trianglar

16
tetraeder

oktaeder

tesserakt

B4

384

Icositetrachoron24-celloctaplexpolyoctahedron

{3,4,3}

24

96

96
trianglar

24
oktaeder

kuber

(själv-dual)

F4

1152

Hecatonicosachoron120-celldodecaplexhyperdodekahedronpolydodekahedron

{5,3,3}

600

1200

720
femhörningar

120
dodekahedra

tetraeder

600-cell

H4

14400

Hexacosichoron600-celletraplexhyperikosaederpolytetraeder

{3,3,5}

120

720

1200
trianglar

600
tetraeder

icosaeder

120-cell

H4

14400

Eftersom gränserna för var och en av dessa figurer topologiskt sett är likvärdiga med en 3-sfär, vars Euler-karaktäristik är noll, har vi den 4-dimensionella analogin till Eulers polyederformel:

N 0- N +1 N2 - N = 3{\displaystyle0 N_{0}-N_{1}+N_{2}-N_{3}=0\,} {\displaystyle N_{0}-N_{1}+N_{2}-N_{3}=0\,}

där Nk anger antalet k-ytor i polytopen (en topp är en 0-yta, en kant är en 1-yta osv.).

Visualiseringar

Följande tabell visar några tvådimensionella projektioner av dessa polytoper. Flera andra visualiseringar finns på de andra webbplatserna nedan. Coxeter-Dynkin-diagrammens grafer anges också under Schläfli-symbolen.

5-cell

8-cell

16-cellig

24-cellig

120-cell

600-cell

{3,3,3}

{4,3,3}

{3,3,4}

{3,4,3}

{5,3,3}

{3,3,5}

Ortografiska projektioner i Petrie-polygoner i trådformat.

Fasta ortografiska projektioner


tetraedrisk
 kuvert

 (cell/vertex-centrerad)


kubiskt kuvert
 (cellcentrerat)


oktaedrisk
 kuvert

 (centrerad)


kuboktaedrisk
 kuvert

 (cellcentrerad)


avtrubbad rombictriakontaedronenvelope
(cellcentrerad)


Pentakis icosidodekahedrala kuvert
(toppcentrerad)

Schlegeldiagram (perspektivprojektion)


(Cell-centrerad)


(Cell-centrerad)


(Cell-centrerad)


(Cell-centrerad)


(Cell-centrerad)


(Vertex-centrerad)

Stereografiska projektioner i trådformat (hypersfäriska)

Relaterade sidor

  • Regelbunden polytop
  • Platonskt fast ämne

Frågor och svar

Fråga: Vad är en konvex regelbunden 4-polytop?


S: En konvex regelbunden 4-polytop är en 4-dimensionell polytop som är både regelbunden och konvex.

F: Vilka är analogerna till konvexa regelbundna 4-polytoper i tre och två dimensioner?


S: Analogerna till konvexa regelbundna 4-polytoper i tre dimensioner är de platonska soliderna, medan de i två dimensioner är regelbundna polygoner.

Fråga: Vem beskrev först konvexa regelbundna 4-polytoper?


Svar: Den schweiziske matematikern Ludwig Schläfli beskrev först konvexa regelbundna 4-polytoper i mitten av 1800-talet.

Fråga: Hur många konvexa regelbundna 4-polytoper finns det?


S: Det finns exakt sex konvexa regelbundna 4-polytoper.

Fråga: Vad är det unika med 24-cellspolytopen bland de konvexa regelbundna 4-polytopen?


S: Den 24-celliga polytopen har ingen tredimensionell motsvarighet bland de konvexa regelbundna 4-polytopen.

Fråga: Vilka är de tredimensionella celler som avgränsar varje konvex regelbunden 4-polytop?


S: Varje konvex regelbunden 4-polytop avgränsas av en uppsättning tredimensionella celler som alla är platonska solider av samma typ och storlek.

Fråga: Hur är de tredimensionella cellerna sammanfogade i en konvex regelbunden 4-polytop?


S: De tredimensionella cellerna är sammanfogade längs sina respektive ytor på ett regelbundet sätt i en konvex regelbunden 4-polytop.

AlegsaOnline.com - 2020 / 2023 - License CC3